
Go 101
image filters

Uber Engineering Sofia09.10.2018

Creating our project

First create the directory for our project:
$ mkdir -p $GOPATH/src/go.uber.org/sofia-go101/image-kernels

func main() {
 filePath := os.Args[1]
 fmt.Printf("Attempting to read image from %s\n", filePath)
 return
}

Then write our entry point in the main function in the file
$GOPATH/src/go.uber.org/sofia-go101/image-kernels/main.go

Creating our project
package main

import (
 "fmt"
 "os"
)

func main() {
 filePath := os.Args[1]
 fmt.Printf("Attempting to read image from %s\n", filePath)
 return
}

*you can follow what we do in:
https://github.com/kunev/coding-girls-image-filters

Compiling and running our code

$ cd $GOPATH/go.uber.org/sofia-go101/image-kernels
$ go build
$./image-kernels not-an-actual-image-file.png
Attempting to read image from not-an-actual-image-file.png

It’s your turn from here on

We’ll give guidance, help out and make
sure everyone manages to keep up with
the same pace*. However from now on it’s
all about you writing the code yourself.

*you can follow what we do in:
https://github.com/kunev/coding-girls-image-filters

Reading the image

We want to load the actual image data from a file. Use any image you want to
play around with, or have some gophers.

Put the image file in the same directory as the main.go file and name it
input.jpg or input.png depending on what the original format is (you can
obviously name it whatever you want, but our examples onwards will assume it’s
called input.jpg/input.png).

https://upload.wikimedia.org/wikipedia/commons/7/77/Pocket_gopher.jpg
https://cdn.pixabay.com/photo/2017/05/28/19/29/animal-2352010_960_720.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Botta%27s_Pocket_Gopher_%28Thomomys_bottae%29.jpg/721px-Botta%27s_Pocket_Gopher_%28Thomomys_bottae%29.jpg
https://upload.wikimedia.org/wikipedia/commons/c/cb/Pocket-Gopher_Ano-Nuevo-SP.jpg

Using the built-in os and image packages load the image data in your code and
print the type* of the image that we’re loading.

You can find documentations for the packages here:

● https://godoc.org/image
● https://godoc.org/os

You will need to use the os.Open and image.Decode functions.

You can run your code at any time by executing the following command from the
shell:
$ go build && ./image-kernels input.jpg

Reading the image
* you can import a package simply for its
side effects using the following syntax:
import (

_ “some/package”

)

https://godoc.org/image
https://godoc.org/os

Reading the image

imageFile, err := os.Open(filePath) // open the file
if err != nil { // check if something went wrong opening the file
 log.Fatal(err) // print the error and exit if anything broke
}

_, format, err := image.Decode(imageFile) // try decoding the image data
if err != nil { // check for error when decoding image data
 log.Fatal(err) // print error and exit if anything went wrong
}

fmt.Printf("Read a %s image \n", format) // print what the image format is

Here’s how we can achieve this:

Reading the image

func main() {
 filePath := os.Args[1]
 fmt.Printf("Attempting to read image from %s\n", filePath)
 imageFile, err := os.Open(filePath)
 if err != nil {
 log.Fatal(err)
 }
 _, format, err := image.Decode(imageFile)
 if err != nil {
 log.Fatal(err)
 }
 fmt.Printf("Read a %s image \n", format)
 return
}

Which makes our main function look like so:

Reading the image

import (
 "fmt"
 "image"
 "log"
 "os"

 _ "image/jpeg" // this allows image.Decode to recognize jpeg files
 _ "image/png" // this allows image.Decode to recognize png files
)

The import section at the top should now look like this:

Using whatever’s available in the Image struct you get from the
call to image.Decode, print the width and height of the image.

Remember, godoc.org is awesome and it’s your best friend
while writing go code!

Print the image dimensions

hint: the Size of an image is
something you can get from its

Bounds

https://godoc.org

Print the image dimensions

First we’ll actually use the image data we decode from the file, so we should give
it a name. Change this line:
_, format, err := image.Decode(imageFile)

to
imageData, format, err := image.Decode(imageFile)

Then we can use the Bounds method of the Image struct to get a rectangle
representing the image dimensions and we can call its Size method to get the
width and height:

fmt.Printf("The size of the image is %s\n", imageData.Bounds().Size())

Extract reading in a function

At this point our main function is starting to get a bit big. We can make our lives
easier by abstracting the opening of the file and reading of the image away in a
function. Let’s call it loadImage and have it take the filename as an argument and
return the image data, image format and an error.

Extract the image reading in a function

func loadImage(filePath string) (image.Image, string, error) {
 imageFile, err := os.Open(filePath)
 if err != nil {
 return nil, "", err
 }
 imageData, format, err := image.Decode(imageFile)
 if err != nil {
 return nil, "", err
 }
 return imageData, format, nil
}

Extract the image reading in a function

func main() {
 filePath := os.Args[1]
 fmt.Printf("Attempting to read image from %s\n", filePath)
 imageData, format, err := loadImage(filePath)
 if err != nil {
 log.Fatal(err)
 }
 fmt.Printf("Read a %s image \n", format)
 fmt.Printf("The size of the image is %s\n",
 imageData.Bounds().Size())
 return
}

As we will be making changes to the image we want to save it to another file. It’s
easier to have that set up before we start doing any actual processing, so we can
see our results right away once we get there.

Let’s just save a copy of our image. The image/png and image/jpeg packages
both export an Encode function, which can be used to write image data to a file.
We can use this to

We can use the switch construct to decide which one to use.

Now that we will use the image/png and image/jpeg packages
we should remove the blank imports.

Saving a copy of the image

writer, err := os.Create(fmt.Sprintf("output.%s", format))
if err != nil {
 log.Fatal(err)
}

switch format {
case "jpeg":
 jpeg.Encode(writer, imageData, nil)
case "png":
 png.Encode(writer, imageData)
}

Saving a copy of the image

It’s a good idea to make sure we always handle errors though! We don’t want things breaking
silently and leaving us unaware of problems. Both Encode functions return errors we should
handle.

Saving a copy of the image

switch format {
case "jpeg":
 err := jpeg.Encode(writer, imageData, nil)
case "png":
 err := png.Encode(writer, imageData)
}

if err != nil {
 log.Fatal(err)
}

We can move the writing to a function as well:

func writeImage(imageData image.Image, format string) error {
 writer, err := os.Create(fmt.Sprintf("output.%s", format))
 if err != nil {
 log.Fatal(err)
 }

 switch format {
 case "jpeg":
 return jpeg.Encode(writer, imageData, nil)
 case "png":
 return png.Encode(writer, imageData)
 default:
 return errors.New("Unknown format")
 }
}

Saving a copy of the image

So our main function becomes even easier to read:

func main() {
 filePath := os.Args[1]
 fmt.Printf("Attempting to read image from %s\n", filePath)
 imageData, format, err := loadImage(filePath)
 if err != nil {
 log.Fatal(err)
 }
 fmt.Printf("Read a %s image \n", format)
 fmt.Printf("The size of the image is %s\n", imageData.Bounds().Size())

 if err := writeImage(imageData, format); err != nil {
 log.Fatal(err)
 }
 return
}

Saving a copy of the image

Image kernels are a simple way to do image processing.
It a boils down to changing the value of a pixel based on
the values of its neighbours and itself.

We’ll use kernels to do the image processing. So let’s
start by creating a type for our kernels. We’ll keep that in
a separate kernel subpackage of our project. For that
we need to create a directory called kernel and add a file
to it (say kernel.go) which belongs to the kernel
package.

Image kernels

source:
https://twitter.com/noahhlo/status/437395572081688576

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://twitter.com/noahhlo/status/437395572081688576

We’ll start off by creating just a Kernel type, then move on to implementing a New
function for it and some methods.

So our kernel/kernel.go file should look like this:

Image kernels

package kernel

// Kernel describes an image
kernel
type Kernel struct {
 Width int
 Height int
 Coefficients [][]float32
}

Now we want to have a New function that returns a kernel struct based on on
[][]float32 argument.

Image kernels

hint: you can get the length of a
slice by calling the built-in len

function

Here’s how that would look:

Image kernels

// New returns a Kernel wrapping the given
coefficients matrix
func New(coefficients [][]float32) Kernel {
 result := Kernel{}
 result.Height = len(coefficients)
 result.Width = len(coefficients[0])
 result.Coefficients = coefficients

 return result
}

Let’s try creating a kernel with our constructor to see what it looks like. We’ll just
instantiate it and pretty print it to see what our New function creates.

Constructing an image kernel

k := kernel.New([][]float32{
 {0, 0, 0},
 {0, 1, 0},
 {0, 0, 0},
})
fmt.Printf("%#v", k)

Then running our code should look like this:

Constructing an image kernel

$ go build && ./image-kernels input.jpg
Attempting to read image from input.jpg

Read a jpeg image

The size of the image is (1999,1324)

kernel.Kernel{Width:3, Height:3,
Coefficients:[][]float32{[]float32{0, 0, 0},
[]float32{0, 1, 0}, []float32{0, 0, 0}}}

We can write a test for our kernel package
in a kernel/kernel_test.go file that would
look like this:

Testing our image kernel
package kernel

import "testing"

func TestNewKernel(t *testing.T) {
 kernel := New([][]float32{
 {0, 0, 0},
 {0, 1, 0},
 {0, 0, 0},
 })
 if kernel.Width != 3 {
 t.Fatal("Width is wrong")
 }
 if kernel.Height != 3 {
 t.Fatal("Height is wrong")
 }
}

Running our tests is quite simple:

Testing our image kernel

$ go test go.uber.org/sofia-go101/image-kernels/kernel
ok go.uber.org/sofia-go101/image-kernels/kernel 0.001s

We’re getting to the gist of it. We have a loaded image and we have
created a kernel. Now we want to apply the kernel to the image.

What we want is to iterate over all the pixels of an image and do
something for each of them. Similar to how we just copy and pasted the
file using the image data we got, let’s just initially make our kernel do
nothing by giving it an Apply method that iterates over the pixels of the
image data and simply copies them to another Image struct it returns.

You can use the Bounds() method again to get the parameters for
iterating over the pixels of the image, then use At() and Set() to copy
the pixels.

Applying the kernel

// Apply applies a kernel to an image returning the resulting image
func (k Kernel) Apply(img image.Image) (image.Image, error) {
 imageBounds := img.Bounds()
 result := image.NewRGBA(imageBounds)

 for x := imageBounds.Min.X; x < imageBounds.Max.X; x++ {
 for y := imageBounds.Min.Y; y < imageBounds.Max.Y; y++ {
 result.Set(x, y, img.At(x, y))
 }
 }

 return result, nil
}

Applying the kernel

Here’s how we do this:

Getting a pixel’s neighbourhood

We compute the new value of a pixel with our kernel based on the
values of its neighbouring pixels, so we need a way to get all of the valid
neighbour pixels for a given pixel in the image.

We want a function that will give us the
neighbourhood Width×Height pixels for a given
pixel.

If each gopher on the right is a pixel, then the 3×3
neighbourhood of the middle one would be all nine
gophers.

Getting a pixel’s neighbourhood

We’ll need to know exactly where a neighbour is in relation to the central
pixel we are calculating a value for. For that purpose we’ll create a
unexported struct type that will hold a pixel value (a color.Color struct)
and X and Y offsets.

type neighbour struct {
 xOffset int
 yOffset int
 clr color.Color
}

Getting a pixel’s neighbours

Our function’s signature should be as follows:

func (k Kernel) getNeighbourhood(x, y int, img image.Image) []neighbour

Getting a pixel’s neighbours

And this is how we can implement it:

func (k Kernel) getNeighbourhood(x, y int, img image.Image) []neighbour {
 bounds := img.Bounds()
 neighbourhood := []neighbour{}
 for i := -k.Width / 2; i <= k.Width/2; i++ {
 if x+i < bounds.Min.X || x+i > bounds.Max.X {
 continue
 }
 for j := -k.Height / 2; j <= k.Height/2; j++ {
 if y+j < bounds.Min.Y || y+j > bounds.Max.Y {
 continue
 }
 neighbourhood = append(neighbourhood, neighbour{
 xOffset: i,
 yOffset: j,
 clr: img.At(x+i, y+j),
 })
 }
 }
 return neighbourhood
}

Applying the kernel for a pixel

Every Color struct has four components to it: red, green, blue and alpha
(the R, G, B, and A attributes of the struct). We want to apply the kernel
on each color layer of our image and leave the alpha channel
unchanged.

Knowing the offset of a neighbour we want to
add the product of each of its color values to
the respective color value of a new “empty”
result image that we will return.

hint: all types in Go have default values, for numeric types that’s 0

Applying the kernel on a pixel

Our function signature should look something like this:

func (k Kernel) pixelValueFromNeighbourhood(neighbourhood []neighbour) color.Color

hint: all types in Go have default values, for numeric types that’s 0

Applying the kernel on a pixel

The color.Color type has an RGBA method that returns four values. You
can ignore one or several of the returned values by assigning them to
the blank identifier _ (underscore).

You can cast a variable of one type to another
by using the type you want to cast to as a
function you call on the variable.

var b float = 3.0
var a int = int(b)

Applying the kernel on a pixel

Here’s how all this looks:

func (k Kernel) pixelValueFromNeighbourhood(neighbourhood []neighbour)
color.Color {
 result := color.RGBA64{}
 for _, n := range neighbourhood {
 coef := k.Coefficients[n.xOffset+k.Width/2][n.yOffset+k.Height/2]
 r, g, b, a := n.clr.RGBA()
 result.R += uint16(float32(r) * coef)
 result.G += uint16(float32(g) * coef)
 result.B += uint16(float32(b) * coef)
 result.A = uint16(a)
 }
 return result
}

Tying it together

Now that we’ve done pretty much everything we just need the final
touch of actually making the computation for each pixel of the image.

We have the loop set up in the Apply method already,
we just need to use it to set the values of the pixels in
our result image to be the output of the kernel
application on the corresponding pixel’s
neighbourhood in the original image.

Tying it together

All that really is is simply:

neighbourhood := k.getNeighbourhood(x, y, img)
result.Set(x, y, k.pixelValueFromNeighbourhood(neighbourhood))

Tying it together

So now Apply looks like this:
// Apply applies a kernel to an image returning the resulting image
func (k Kernel) Apply(img image.Image) (image.Image, error) {
 imageBounds := img.Bounds()
 result := image.NewRGBA(imageBounds)

 for x := imageBounds.Min.X; x < imageBounds.Max.X; x++ {
 for y := imageBounds.Min.Y; y < imageBounds.Max.Y; y++ {
 neighbourhood := k.getNeighbourhood(x, y, img)
 result.Set(x, y, k.pixelValueFromNeighbourhood(neighbourhood))
 }
 }

 return result, nil
}

Saving the result to the output file

All that’s left is to call Apply from our main function and save the result:

k := kernel.New([][]float32{
 {0.1, 0.1, 0.1},
 {0.1, 0.1, 0.1},
 {0.1, 0.1, 0.1},
})
resultImage, _ := k.Apply(imageData)

if err := writeImage(resultImage, format); err != nil {
 log.Fatal(err)
}

Running our code

All that’s left is to call Apply from our main function and save the result:

$ cd $GOPATH/go.uber.org/sofia-go101/image-kernels
$ go build
$./image-kernels input.jpg

